

IN
Intelligent Network

&

TMN
Telecom Management Network

Information GmbH

abc

Kommunikation und Beratung

(c)

abc Information GmbH
Phone: +49 30 383983-0
Fax: +49 30 383983-115
eMail: info@Berlin.Broker.de

Comparing DCE and CORBA

abc Information GmbH Kommunikation und Beratung 2005
Phone: +49-30-383983-0, E-Mail: contact@Berlin.Broker.de

I nformation

abc

GmbH Kommunikation
und Beratung

Comparing DCE and CORBA

2

D.Heide / dhd@Berlin.Broker.de
C.Lang / cla@Berlin.Broker.de

Abstract
Many people perceive DCE and CORBA as competing technologies. Indeed, both support the construction and
integration of client-server applications in heterogeneous distributed environments. Comparisons typically focus
on differences between individual capabilities or on differences between the maturity of specifications and
products that conform to them. There is a fundamental difference between DCE and CORBA, however, that we
feel far overshadows either of these criteria as a basis for selecting a distributed computing platform. This
document summarizes the main features of DCE and CORBA, presents what we feel is the most important
difference between them, discusses differences between individual capabilities and the maturity of both
specifications and products, and concludes with our view of how an organization should select the technology
most appropriate to its distributed computing goals.

Table of Contents
1. Introduction
2. Overview of DCE
3. Overview of CORBA
4. The Fundamental Difference Between DCE and CORBA
5. Differences Between Individual Capabilities
6. Maturity of the Specifications and Conformant Products
7. Choosing the Right Technology

List of References
Bibliography
Glossary

List of Figures
Figure 1. Requesting Services Using DCE or CORBA
Figure 2. OSF DCE Architecture
Figure 3. OMG CORBA Architecture

abc Information GmbH Kommunikation und Beratung 2005
Phone: +49-30-383983-0, E-Mail: contact@Berlin.Broker.de

I nformation

abc

GmbH Kommunikation
und Beratung

Comparing DCE and CORBA

3

1. Introduction

Many people perceive the Open Software Foundation (OSF) Distributed Computing Environment (DCE) and
Object Management Group (OMG) Common Object Request Broker Architecture (CORBA) as competing
technologies. Indeed, both support the construction and integration of client-server applications in heterogeneous
distributed environments, and both do so in very similar ways with very similar capabilities.

Figure 1 depicts at a very high level the manner in which service requests are handled by DCE and CORBA.
Both define an Interface Definition Language (IDL).

DCE IDL is based on the C programming language; CORBA IDL is based on C++. IDL is used to define the
interface that a server implements, that is, the set of

services that clients may request of it. Both DCE IDL and CORBA IDL compile into client and server stubs. A
client application calls a client stub to request a service. The client stub interfaces to the runtime system, which
eventually invokes server code that implements the requested service through the appropriate server stub.

Figure 1. Requesting Services Using DCE or CORBA

The transmission of service requests and responses between clients and servers is handled by both DCE and
CORBA so that applications need not deal with concerns like: where clients and servers are located on the
network; differences between hardware platforms, operating systems, and implementation languages (for
example, data formats or calling conventions); networking protocols; and others.

There are many other similarities between DCE and CORBA, as one would expect. However, our purpose here is
not to present a litany of the similarities between these two technologies. It is our intention to examine how they
differ from one another.

Comparisons of DCE and CORBA are commonplace; however, they typically focus either on differences
between individual capabilities or on differences between the relative maturity of specifications and of products
that conform to them. There is a fundamental difference between DCE and CORBA, however, that we feel far
overshadows either of these criteria as a basis for selecting a platform for distributed computing.

The purpose of this document is to discuss the differences between DCE and CORBA on all of these levels.
Before doing so, we summarize the features that DCE and CORBA offer. After presenting what we feel is the
most important difference between the two technologies, we discuss the differences between the individual
capabilities they provide and the relative maturity of both the specifications and the products that conform to

abc Information GmbH Kommunikation und Beratung 2005
Phone: +49-30-383983-0, E-Mail: contact@Berlin.Broker.de

I nformation

abc

GmbH Kommunikation
und Beratung

Comparing DCE and CORBA

4

them. Then we present our view of how an organization should select the technology most appropriate for its
distributed computing goals.

abc Information GmbH Kommunikation und Beratung 2005
Phone: +49-30-383983-0, E-Mail: contact@Berlin.Broker.de

I nformation

abc

GmbH Kommunikation
und Beratung

Comparing DCE and CORBA

5

2. Overview of DCE

DCE supports the construction and integration of C-based client/server applications in heterogeneous distributed
environments. Figure 2 shows the various elements that comprise the DCE architecture.

Figure 2. OSF DCE Architecture

DCE Executive
The DCE Executive consists of the following components:

Security Services that support authentication (using Kerberos V5, clients and servers can prove who they are),
authorization (servers can use access control lists to determine whether a client is authorized to obtain a given
service), integrity (checksums guarantee that information is received as transmitted), and privacy (DES
encryption protects sensitive information from disclosure during transmission between a client and server).

Directory Services that support local DCE administration domains called cells and inter-cell name resolution.
These services consist of a Cell Directory Service (CDS), Global Directory Service (GDS, which uses X.500),
Domain Name Service (DNS, not supplied, but used by DCE), and a Global Directory Agent (GDA).

A Distributed Time Service (DTS) that synchronizes clocks on all hosts in a DCE cell, as well as between cells.
DTS uses the UTC standard and is interoperable with NTP.

A Remote Procedure Call (RPC) mechanism by which clients invoke procedures in servers. A client may use
directory services to bind to a particular server of interest at run time, and the client and server may use security
services to guarantee desired levels of authentication, authorization, integrity, and privacy.

abc Information GmbH Kommunikation und Beratung 2005
Phone: +49-30-383983-0, E-Mail: contact@Berlin.Broker.de

I nformation

abc

GmbH Kommunikation
und Beratung

Comparing DCE and CORBA

6

The RPC mechanism insulates clients from details of where servers are located on the network, the types of
hardware and operating system platforms on which they execute, differences in data representations between
client and server platforms, and the particular network transports in use.

A Threads package based on POSIX 1003.4a (draft 4) that supports the creation and management of multiple
threads of control within a client or server. A multi-threaded client may perform additional work (perhaps invoke
additional RPCs) while one RPC is pending. The dispatcher that receives RPCs at a server and invokes the
appropriate RPC handlers is already multi-threaded, automatically permitting DCE servers to handle multiple
RPCs concurrently. The maximum number of concurrent RPCs at a server is easily configured by the developer,
who is also responsible for ensuring the thread-safe behavior of all RPC handlers.

DCE Extended Services
DCE Extended Services currently consist of the Distributed File Service (DFS) alone. The DFS is a DCE
application that implements a single logical filesystem that is available (through Directory Services) throughout
an entire cell and across cell boundaries. DFS supports replication of files for availability and fault-tolerance and
log-based recovery from hardware failures.

The remaining components that appear in Figure 2 as DCE Extended Services are vestiges of OSF’s Distributed
Management Environment (DME), which failed to obtain vendor buy-in and has ceased to exist as an entity in its
own right. These components are shown in dashed boxes because it is not clear at this time whether they will be
incorporated into future releases of DCE. The Network Management Option would provide a means for
management applications to access management information using standard network management protocols
(CMIP and SNMP). The Event Service would provide a common way for system and user applications to
generate, forward, filter, and log events.

The Bibliography lists sources of additional information about DCE.

abc Information GmbH Kommunikation und Beratung 2005
Phone: +49-30-383983-0, E-Mail: contact@Berlin.Broker.de

I nformation

abc

GmbH Kommunikation
und Beratung

Comparing DCE and CORBA

7

3. Overview of CORBA

CORBA supports the construction and integration of object-oriented software components in heterogeneous
distributed environments. Figure 3 shows the various elements that comprise the CORBA architecture.

Figure 3. OMG CORBA Architecture

abc Information GmbH Kommunikation und Beratung 2005
Phone: +49-30-383983-0, E-Mail: contact@Berlin.Broker.de

I nformation

abc

GmbH Kommunikation
und Beratung

Comparing DCE and CORBA

8

Object Request Broker
An Object Request Broker (ORB) provides a communication infrastructure for invoking operations on objects
transparently with respect to where they are located on the network, the types of hardware and operating system
platforms on which they execute, differences in data representations between platforms, the languages in which
objects are implemented, and network transports used to communicate with them. CORBA specifies all of the
functions that must be provided by an ORB and a set of standard interfaces to those functions.

CORBA Services
CORBA Services are services that are essential for implementing objects. The CORBA Services that have been
specified thus far by OMG include: A Concurrency Control Service that protects the integrity of an object’s data
when multiple requests to the object are processed concurrently. An Event Service that supports the notification
of interested parties when program-defined events occur.

An Externalization Service that supports the conversion of object state to a form that can be transmitted between
systems by a means other than a request broker.

Life Cycle Services that support creation, copying, moving, and destruction of objects.

A Naming Service that permits object references to be retrieved through associations between names and objects,
and for those associations to be created and destroyed.

A Persistent Object Service that supports the persistence of an object’s state when the object is not active in
memory and between application executions.

A Query Service that supports operations on sets and collections of objects that have a predicate-based,
declarative specification and may result in sets or collections of objects.

A Relationship Service that provides for creating, deleting, navigating, and managing relationships between
objects (for example, a containment relationship between a „folder“ object and the „document“ objects that are
considered to be „in“ that folder).

A Transaction Service that provides support for ensuring that a computation consisting of one or more operations
on one or more objects satisfies the requirements of atomicity (if a transaction is interrupted by a failure, any
partially completed results are undone), isolation (transactions are allowed to execute concurrently, but the
results are the same as if they executed serially), and durability (if a transaction completes successfully, the
results of its operations are never lost, except in the event of catastrophe).

CORBA Services that are in the process of being specified and are expected to be completed in 1995 include:

A Licensing Service that will control and manage remuneration of suppliers for services rendered.

A Property Service that will support the association of arbitrary named values (the dynamic equivalent of
attributes) with an object.

A Security Service that will support authentication, authorization, integrity, and privacy to degrees, and using
mechanisms, that are yet to be determined.

A Time Service that will provide synchronized clocks to all objects, regardless of their locations.

CORBA Services that are not yet in the process of being specified include:

A Change Management Service that would support the identification and consistent evolution of configurations
of objects.

A Collection Service that would support the creation and manipulation of collections of objects.

A Data Interchange Service that would support the exchange of data between objects.

abc Information GmbH Kommunikation und Beratung 2005
Phone: +49-30-383983-0, E-Mail: contact@Berlin.Broker.de

I nformation

abc

GmbH Kommunikation
und Beratung

Comparing DCE and CORBA

9

A Replication Service that would provide for the explicit replication of objects in a distributed environment (for
the purpose of availability or fault tolerance) and for the management of consistency of replicated copies.

A Trader Service that would provide a matchmaking service between clients seeking services and objects
offering services.

CORBA Facilities
CORBA Facilities are useful for constructing applications across a wide range of application domains. They are
divided into Horizontal CORBA Facilities, which are typically more user-oriented, and Vertical CORBA
Facilities, which support specific application domains. The Horizontal CORBA Facilities currently identified by
OMG are grouped into four areas:

User Interface Facilities, which include Compound Presentation, Desktop Management, Rendering Management,
Scripting, and User Support Facilities.

Information Management Facilities, which include Compound Interchange, Data Encoding and Representation,
Data Interchange, Information Exchange, Information Modeling, Information Storage and Retrieval, and Time
Operations Facilities.

System Management Facilities, which include Collection Management, Consistency, Customization, Data
Collection, Event Management, Instance Management, Instrumentation, Policy Management, Process Launch,
Quality of Service Management, Scheduling Management, and Security Facilities.

Task Management Facilities, which include Agent, Automation, Rule Management, and Workflow Facilities.

No Horizontal CORBA Facilities have been specified as yet. The first CORBA Facilities RFP was issued in
October of 1994 for Compound Document Facilities (Compound Presentation and Compound Interchange).
Further RFPs will be forthcoming in 1995.

The Vertical CORBA Facilities currently identified by OMG (as a result of responses from interested vertical
market segments to an OMG RFI) are: Accounting, Application Development, Computer Integrated
Manufacturing, Currency, Distributed Simulation, Imagery, Information Superhighways, Internationalization,
Mapping, Oil and Gas Exploration and Production, Security, and Telecommunication. No Vertical CORBA
Facilities have been specified as yet.

The Bibliography lists sources of additional information about CORBA.

abc Information GmbH Kommunikation und Beratung 2005
Phone: +49-30-383983-0, E-Mail: contact@Berlin.Broker.de

I nformation

abc

GmbH Kommunikation
und Beratung

Comparing DCE and CORBA

10

4. The Fundamental Difference Between DCE and
CORBA

The fundamental difference between DCE and CORBA is that DCE was designed to support procedural
programming, while CORBA was designed to support object-oriented programming. Object-oriented
programming environments are usually characterized by their support for:

• Encapsulation of data and the functions that manipulate the data into objects. This enforces data hiding, since
the only way to access an object’s data is through the operations in the object’s public interface.

• Abstraction of common features shared by objects into classes. A class definition describes the data
associated with each instance of the class, defines the set of operations that can be invoked on an instance of
the class, and prescribes the functions that are executed in response to requests for those operations.
Inheritance of interfaces and implementations. This is the mechanism that supports the specialization or
refinement of classes into subclasses. It is also one example of reuse in object-oriented programming.

• Polymorphism, which is the ability for a request for a specific operation to be handled differently depending
on the type of object on which it is invoked. For example, subclasses of a common superclass may override
functions defined by the superclass to differentiate how instances of the subclasses and the superclass behave.

In addition to these common characteristics, object-oriented programming environments usually support a style
of programming in which:

• Not only new objects, but new classes may be created at runtime.

• Late binding of operation invocations to function calls allow programs to be written without regard for the
types of objects they will manipulate.

• Object references are passed among objects freely, which can lead to dynamic patterns of request invocations
among objects of arbitrary types (by virtue of late binding).

• Once defined, objects and classes may be reused or refined in subsequent applications, extending the
usefulness of object implementations across multiple applications.

CORBA supports all of the common characteristics and programming styles described above, with the possible
exception of creating new classes at runtime. We believe the creation of new classes at runtime may be enabled
by recently adopted CORBA 2.0 specifications. In particular, we refer to additional Interface Repository
operations for adding information to a repository at runtime and a Dynamic Skeleton Interface, which supports
the implementation of servers capable of handling requests for objects whose types are unknown at compile time.

Distributed procedural programming environments such as DCE support a different set of capabilities than those
described above. The basic approach to distributing a procedural program is to:

1.Partition the program’s data and the functions that manipulate the data into servers;

2.Distribute those servers across multiple hosts; and

3.Change function calls to RPCs, as appropriate.

This style of programming does encapsulate data and functions in servers, because the only way to access the
data is through the server’s RPC interface. It does not protect any of the data within a server from access by any
of the functions in the server, however. Nor does it support abstraction, inheritance, polymorphism, or the
dynamic style of programming described above.

abc Information GmbH Kommunikation und Beratung 2005
Phone: +49-30-383983-0, E-Mail: contact@Berlin.Broker.de

I nformation

abc

GmbH Kommunikation
und Beratung

Comparing DCE and CORBA

11

DCE does have additional capabilities that begin to overlap with traditional capabilities of object-oriented
systems:

• A DCE client can determine at runtime the specific servers to which it will bind and make RPCs (although the
interfaces supported by those servers must be fixed at compile time).

• A DCE server may generate what are called object UUIDs (universal unique identifiers) to denote different
resources managed by the server. A client that does an RPC to the server can use an object UUID to identify a
specific resource. For example, a print server might generate object UUIDs for the different printers it
controls, and a client submitting a print request would specify the desired printer.

• A DCE server may also generate what are called object type UUIDs, associate each object UUID with an
object type UUID, and register a separate set of RPC handlers for each object type UUID. When a client does
an RPC to the server and specifies an object UUID, the specific function that is invoked in the server depends
on the object type with which the object UUID is associated. For example, our print server might associate
one object type UUID with RPC handlers that support line printers and another object type UUID with a
corresponding set of RPC handlers that support PostScript printers.

• One can argue that these features support some of the characteristics of object-oriented systems described
above. The object type UUID does indeed support some form of abstraction and polymorphism. The
important distinction to be made here is that procedural programming is not object-oriented programming,
although it can be used to implement an object-oriented programming environment, just as C is often used to
implement C++ (that is to say, C++ is often pre-processed into C before compilation).

• The analogy between C and C++ is a good one. Many CORBA-conformant ORB vendors (DEC, HP, and
IBM, for example) are implementing ORBs on top of DCE. The desirability of the object-oriented approach
even within the DCE community is evidenced by several efforts to provide C++ interfaces to DCE [Dilley,
Leddy, Mock, Viveney].

The OODCE RFC [Dilley] relates DCE and CORBA as follows:

• „...our work focuses on integrating C++ within the existing DCE system infrastructure, simplifying the use of
the DCE object model.

• „OMG CORBA will address creating distributed object systems in C++; some implementations will run on
top of DCE. CORBA IDL provides for interface inheritance, which DCE IDL is lacking, and provides a more
C++-like syntax for interface specification. The CORBA runtime environment provides a richer set of object
invocation and passing than the DCE environment.

• „We suggest that our work may assist in the migration from DCE to CORBA by providing an intermediate
C++-based distributed object system until CORBA implementations are widely available.“

abc Information GmbH Kommunikation und Beratung 2005
Phone: +49-30-383983-0, E-Mail: contact@Berlin.Broker.de

I nformation

abc

GmbH Kommunikation
und Beratung

Comparing DCE and CORBA

12

5. Differences Between Individual Capabilities
Although we feel that the most significant difference between DCE and CORBA is in the style of programming
each is intended to support, there are inevitable differences between the individual capabilities they provide. For
example:

DCE supports several useful datatypes that CORBA does not support:

A varying array in DCE is an array of fixed size, of which only part is passed between client and server;
however, the entire array is allocated at the server, which may return more array elements than were passed to
it. CORBA has no equivalent datatype; however, equivalent behavior may be obtained using a CORBA
sequence.

DCE pipes permit very large parameter values to be passed in a series of smaller blocks so that data
transmission and processing may be pipelined.

CORBA supports no corresponding mechanism for dealing with very large parameter values; the programmer
can implement pipelining only by breaking up what might be a single operation conceptually into a series of
operations.

DCE supports contexts, which are a mechanism for maintaining server state during a series of logically
related requests from a single client. (For example, the client might be issuing a series of RPCs to retrieve a
set of records from a database one at a time.) The server state is passed to the client as an opaque context
structure; the client includes the context in subsequent RPCs, and the server uses and modifies the state
information in the context, as appropriate. DCE provides support for contexts directly in client and server
stubs. CORBA has no corresponding mechanism; the programmer is responsible for managing contextual
information explicitly. (It should be noted that DCE contexts have no relationship to CORBA contexts, which
are used to carry user preferences along with a request to an object.)

DCE fully supports the use of pointers as, and within, operation parameters. An operation that is defined in
DCE IDL may take a pointer as a parameter. Of course, such a parameter is not actually passed beween a
DCE client and server as an address, which is generally not meaningful in a distributed environment. The
DCE run-time system packages up the value the address points to as part of the process of marshalling the
request in preparation for transmission to the server. Furthermore, if a parameter is a complex structure that
contains pointers, the DCE run-time system will package up all of the values addressed by those pointers
during marshalling, transmit them to the server, and reconstitute the complex parameter with pointers in the
server.

CORBA does not support the use of pointers as, or within, operation parameters. The set of CORBA IDL
basic datatypes and constructs for building complex datatypes do not include pointers (although they may be
implemented using pointers). This means that a programmer may pass complex structures that contain
pointers as operation parameters in two ways. The programmer may write additional code to marshall the
actual values addressed by pointers into pointer-free datatypes in the client and then reconstitute the complex
parameter with pointers in the server. Alternatively, the programmer may redefine the complex data structure
as a collection of one or more objects, since CORBA does support complex structures composed of objects.

CORBA supports an „any“ data type that DCE does not support. This permits a value of an arbitrary type to
be passed between a client and server. The value carries with it a code that indicates its type.

DCE IDL does not support interface inheritance and defines a flat namespace. CORBA IDL supports multiple
inheritance and defines a hierarchical namespace.

CORBA defines an Interface Repository that contains information equivalent to that in IDL files and can be
queried at runtime. DCE defines no such repository.

abc Information GmbH Kommunikation und Beratung 2005
Phone: +49-30-383983-0, E-Mail: contact@Berlin.Broker.de

I nformation

abc

GmbH Kommunikation
und Beratung

Comparing DCE and CORBA

13

In addition to a static (stub) interface, CORBA defines a dynamic invocation interface that can be used by a
client to invoke an arbitrary operation on an arbitrary object type at runtime (supporting the late binding of
operation invocations to function calls). DCE defines no such invocation mechanism - the appropriate RPC
stubs must be linked into a DCE client.

DCE servers must be brought up by means external to DCE. CORBA also supports automatic server activation
(in other words, an ORB will bring up a server if it is not up when a request is directed to it). The services that
DCE provides to an application are rather limited compared to the components of the CORBA architecture,
which covers a much broader spectrum of application support services and provides the developer with a much
richer set of capabilities on which to build.

abc Information GmbH Kommunikation und Beratung 2005
Phone: +49-30-383983-0, E-Mail: contact@Berlin.Broker.de

I nformation

abc

GmbH Kommunikation
und Beratung

Comparing DCE and CORBA

14

6. Maturity of the Specifications and Conformant
Products

DCE Ontogeny
OSF released DCE 1.0, including all the DCE components described above, in 1992. In addition to
specifications, OSF delivered a reference implementation to vendors. By 1993, the first DCE implementations
were available. A partial list of current DCE vendors includes:

AT&T
Bull
DEC
Gradient Technologies
Hitachi
HP
IBM
Pyramid
SCO
Siemens Nixdorf
SGI
Stratus
Tandem
Transarc

OSF released DCE 1.1 to vendors late in 1994, and vendors are expected to release their implementations by
mid-1995. DCE 1.1 provides for enhanced auditing and the X/Open-approved GSSAPI and Extended Registry
Attributes (ERA). These will permit enterprises to bring non-DCE domains under the DCE security umbrella for
common enterprise-wide security administration.

OSF expects to release DCE 1.2 to vendors in two phases: DCE 1.2.1 in November of 1995 and DCE 1.2.2 in
July of 1996. The primary theme for this release will be to remove obstacles to broad end-user deployment of
DCE. The focus areas for this release are currently administration, ease of programming, support for legacy
systems, scalability, security, and DFS enhancements.

While DCE continues to evolve, a number of large end-user organizations have committed to basing their next-
generation, enterprise-wide information systems on DCE.

CORBA Ontogeny
OMG adopted the CORBA 1.0 specification in late 1991. This included no CORBA Services or CORBA
Facilities, nor did OMG release a reference implementation. By mid-1993, the first CORBA-conformant ORBs
were available; by late 1993, the first CORBA Services were specified by OMG. A partial list of vendors who are
currently selling or developing CORBA-conformant ORBs includes:

DEC
Expersoft
HP
IBM
IONA Technologies

abc Information GmbH Kommunikation und Beratung 2005
Phone: +49-30-383983-0, E-Mail: contact@Berlin.Broker.de

I nformation

abc

GmbH Kommunikation
und Beratung

Comparing DCE and CORBA

15

Postmodern Computing
SunSoft

At this time, OMG has specified only nine of the CORBA Services and none of the CORBA Facilities shown in
Figure 3. Furthermore, few implementations of the CORBA Services that have been specified are available yet.
Nonetheless, several large end-user organizations are prototyping elements of their next-generation, enterprise-
wide information systems using CORBA.

Comparison
Clearly, DCE specifications as a whole are closer to completion than CORBA specifications. This is not
surprising, given the ambitious task OMG has undertaken;

Figure 3 is impressive in the breadth and depth of services it depicts. It is another matter entirely whether OMG
will be completely successful at defining all of the components in Figure 3. As for the maturity of DCE
implementations and CORBA-conformant ORBs, there are mature examples of each.

Let us draw the following distinctions:

The completeness of OSF and OMG specifications is one issue. DCE is certainly closer to being fully
specified than CORBA (including all of the CORBA Services and CORBA Facilities).

The maturity (that is, stability) of existing specifications is a second issue. Though all of the existing
specifications are subject to revision, both OSF and OMG are attempting to do so only when necessary and to
maintain backward compatibility whenever possible. In this respect, both the DCE specification and the CORBA
specification (the ORB only, not including CORBA Services or CORBA Facilities) are reasonably mature
(although the CORBA specification may

require greater revision in view of the large number of services yet to be specified).

The completeness of conformant products as far as implementing all of the existing specifications is a third
issue. In this respect, there are reasonably complete implementations of both DCE and CORBA (the ORB
only).

The maturity (that is, stability) of conformant products is the fourth and final issue. In this respect, there are
mature implementations of both DCE and CORBA-conformant ORBs.

Regarding Interoperability
It is common to hear that DCE achieved true interoperability in 1992 with DCE 1.0, while CORBA
interoperability was only recently specified and has yet to be delivered. Typically, each vendor ports DCE to a
specific platform, and interoperability with the reference implementation ensures interoperability among vendors’
implementations.

OMG does not deliver reference implementations, only specifications. CORBA 1.0 did not address
interoperability between ORBs because it was considered premature pending experience implementing basic
ORB functions. As a result, many vendors implemented ORBs on a selection of platforms, providing
interoperability across all of the platforms supported by a given vendor. In fact, some of the ORBs that are
currently available run on over a dozen different platforms and support interoperable clients and servers across
all of those platforms at this time.

Interoperability between ORBs (that is, between ORB vendors) will be a reality in 1995. The Internet Inter-ORB
Protocol (IIOP) specified by OMG in December of 1994 [CORBA2] may be supported via bridges that can be
developed by end-users or third parties without proprietary information about an ORB or modifications to the
ORB. In addition, SunSoft recently made available on the OMG server a public domain implementation of the
major components needed to implement an IIOP bridge. We therefore expect to see widespread interoperability

abc Information GmbH Kommunikation und Beratung 2005
Phone: +49-30-383983-0, E-Mail: contact@Berlin.Broker.de

I nformation

abc

GmbH Kommunikation
und Beratung

Comparing DCE and CORBA

16

among ORBs via IIOP by late 1995 or early 1996. We expect this even with ORBs that use DCE for intra-ORB
communication, although interoperation between DCE-based ORBs may be provided via a DCE-specific
protocol specified by OMG as well.

abc Information GmbH Kommunikation und Beratung 2005
Phone: +49-30-383983-0, E-Mail: contact@Berlin.Broker.de

I nformation

abc

GmbH Kommunikation
und Beratung

Comparing DCE and CORBA

17

7. Choosing the Right Technology
We have stated that the most important difference between DCE and CORBA is their programming paradigms:
DCE was designed to support distributed procedural programming, while CORBA was designed to support
distributed object-oriented programming. Religious convictions must be tempered with more pragmatic concerns,
however.

Comparing the individual capabilities that each gives the developer, CORBA provides a much richer and more
powerful environment. Most of the CORBA services have yet to be specified, however. Current DCE
implementations provide services that are not yet provided by CORBA implementations (in a standard way):
CDS (Naming), Security, DTS (Time), and Threads. The CORBA Naming Service has been specified, and
partial implementations are available now. The CORBA Security and Time Services will not be specified until
late 1995, and we do not expect to see them available in CORBA implementations until late 1996. OMG has no
plans at this time to specify a Threads Service.

If these services are essential to a development effort, the alternatives at present are to use CORBA and
implement the required services yourself or use DCE. If you implement to OMG-specified interfaces, your
service implementations will eventually become superfluous and code that uses those services will port directly to
vendor-supplied implementations, when they are available.

If you decide to use DCE, we suggest doing so with an object-oriented package like DEC’s DCE++ [Viveney] or
HP’s OODCE [Dilley]. This will position you to make the transition to CORBA more easily in the future. In
addition, it is important to be aware that the use of DCE datatypes that are not supported by CORBA (pointers,
for example, as discussed in Section 5) can make the transition to CORBA significantly more painful.

During the next two years, the object technology that OMG is specifying will migrate down into the operating
systems that are delivered with workstations from all of the major vendors. As a result of OMG’s recent adoption
of CORBA 2.0 specifications that include inter-ORB interoperability [CORBA2], we expect to see CORBA
gaining widespread acceptance during the next two years, and we expect that its object orientation and rich set of
services will make it the distributed computing platform of choice.

abc Information GmbH Kommunikation und Beratung 2005
Phone: +49-30-383983-0, E-Mail: contact@Berlin.Broker.de

I nformation

abc

GmbH Kommunikation
und Beratung

Comparing DCE and CORBA

18

Glossary
API - Application Programming Interface
CDS - Cell Directory Service
CMIP - Common Management Information Protocol
CORBA - Common Object Request Broker Architecture
DCE - Distributed Computing Environment
DEC - Digital Equipment Corporation
DES - Data Encryption Standard
DFS - Distributed File Service
DME - Distributed Management Environment
DNS - Domain Name Service
DTS - Distributed Time Service
ERA - Extended Registry Attributes
GDA - Global Directory Agent
GDS - Global Directory Service
GSSAPI - Generic Security Service API
HP - Hewlett-Packard Company
IBM - International Business Machines
IDL - Interface Definition Language
IIOP - Internet Inter-ORB Protocol
NTP - Network Time Protocol
OMG - Object Management Group
OODCE - Object-Oriented Distributed Computing Environment
ORB - Object Request Broker
OSF - Open Software Foundation
POSIX - Portable Operating System Interface for Unix
RFC - Request For Comments
RFI - Request For Information
RFP - Request For Proposals
RPC - Remote Procedure Call
SCO - Santa Cruz Operation
SGI - Silicon Graphics, Inc.
SNMP - Simple Network Management Protocol
UTC - Universal Time Coordinated
UUID - Universal Unique Identifier

